MUS109IA:

Introduction to Micro-Structural Composition and Sound Synthesis

Fall 2022

I. Instructor - Myungin Lee (Advisor - Dr. JoAnn Kuchera-Morin)

II. Time

Tuesday/Thursday 10:00AM-11:50 AM

Following the Fall quarter instruction guidance, the fall quarter class will be conducted in person.

Classroom: Elings 2611, Experimental Visualization Lab

At this time, the only exceptions to this policy are for serious medical conditions, which may result in a temporary remote teaching accommodation granted to an instructor by the University through a formal process.

The student who wants to participate remotely should individually contact to the instructor to request a hybrid session **a day before the class with the proof of medical conditions**.

III. Helpful Web Links

- AlloLib: https://github.com/AlloSphere-Research-Group/allolib_playground
- C++: http://www.cplusplus.com/doc/tutorial/
- Archive: https://www.myunginlee.com/spring-2022

IV. Lecture Schedule	Reading & Assignment For Next Lecture
1. 09/27 (Week 1-1) · Instructor and the AlloSphere Research Group's introduction · Course Description - Review syllabus · Install the software for this course · Brief history of computer music from mainframes to workstations;	Sound Representation = · ROADS- A COMPUTER MUSIC TUTORIAL pp.14-44 · MOORE- ELEMENTS OF COMPUTER MUSIC pp.27-56
2. 09/29 (Week 1-2) · How do computers make music? · Analog to digital and digital to analog conversion systems, introduction to the sampling theorem (aliasing and quantization error) · Digital sound storage and manipulation; sound signal basics = sound representation (analog	Sound Representation (continued) = · ROADS- A COMPUTER MUSIC TUTORIAL pp. 14-44 · MOORE- ELEMENTS OF COMPUTER MUSIC pp.27-56 (Roads 14-44 & Moore 27-56) Acoustics · DODGE (pp.25-61)

representations, transducers, noise distortion, recording) · Digital Audio - sound digitization = ADC/DAC conversion systems, pulse code modulation, sampling theorem (in detail), aliasing, linear quantization, encoding, non linear quantization, digital signal characteristics, digital waveforms	Psychoacoustics • ROADS - COMPUTER MUSIC TUTORIAL, Part VII; and MOORE-, ELEMENTS OF COMPUTER MUSIC (pp.17-23)
3. 10/04 (Week 2-1) · Start acoustics = waveform characteristics, periodic and aperiodic waveforms, spectrum characteristics · Discussion acoustics and psychoacoustics · Digital signal flow diagrams; start discussion of program subroutines for sound generation and sound modification = the table lookup oscillator, noise generators, envelope generators, digital filters; AlloLib program design overview = AlloLib general discussion Synth 1 instr	· Oscillators, amps, envelope generators etc read MOORE (pp.150-175) & ROADS (pp .87-107) · AlloLib Documentation · Make envelope composition Assignment #1
 4. 10/06 (Week 2-2) Listening and Analysis = Ligeti – Atmospheres (envelopes and waveforms) Finish AlloLib score, finish discussion of sound generation and sound modification, Synth 1 instr (cont) Listening and Analysis = Varese - Octandre Schoenberg – Farben 	 Format scores for Synth instr 1 Synth instr 1 assignment (cont.) AlloLib Documentation Make envelope composition Assignment #1 Sub-audio FM = MOORE (pp.198-203)
 5. 10/11 (Week 3-1) Discuss Synth 2 instr Assignment #1 due. Share assignments Synth 2 instr continued Discuss assignment #2, Waveforms Computer Music Instrument Design - begin discussion of digital sound synthesis applications = detailed discussion of sub-audio frequency modulation and AlloLib code for 	 Make waveform composition #2 AlloLib Documentation Sub-audio FM = MOORE (pp.198-203)(cont) AlloLib Documentation Continue working on Assignment #2

note list parametric data input to sub-audio fm instr (Synth 3 instr)	
6. 10/13 (Week 3-2) · Sub-audio FM continued = Synth 3 instr · Listening and Analysis – Penderecki	· Continue working on Assignment #2 using vibrato instr, making use of various vibrato experiments; · Read ROADS = audio FM (pp.224-239), MOORE(pp.316-329)
7. 10/18 (Week 4-1) Assignment #2 due = waveforms · Finish sub-audio FM = Synth 3 instr · Begin Audio FM discussion · AlloLib fm instr note list	• Make a small composition(#3) • Read ROADS= audio FM (pp.224-239), MOORE (pp.316-329) FM (pp.224-239), MOORE (pp.316-329) AM – MOORE (pp.185-189) and ROADS (pp. 215-224)
8. 10/20 (Week 4-2) · Detailed discussion of audio frequency modulation and <i>AlloLib</i> code for notelist, pfield data input to the audio FM. · Begin Listening to audio FM pieces (Chowning – Stria, Phonee)	· Make vibrato composition #3
9. 10/25 (Week 5-1) Assignment #3 due = vibrato · Audio FM in detail	Begin working on Assignment #4
10. 10/27 (Week 5-2) · Audio FM in detail · Compositional Process and Listening; · Various audio examples of computer music which demonstrate various computer synthesis techniques (Chowning – Stria, Phonee)	· Work on Assignment #4, and reading, AM – MOORE (pp. 185-189) ROADS (pp. 215-224)
11. 11/01 (Week 6-1) · Computer Music Instrument Design continued- · Detailed discussion of audio frequency modulation and <i>AlloLib</i> code for notelist pfield data input to the audio fm computer program	· Keep working on Assignment #4, · Continue reading
12. 11/03 (Week 6-2) Assignment #4 due = audio FM · Computer Music Instrument Design continued- · Begin discussion sub-audio & audio amplitude modulation	· Work on Assignment #5, · Continue reading - AM – MOORE (pp. 185-189) read MOORE - additive synthesis Learn sub-audio and audio AM

13. 11/08 (Week 7-1) · Discuss amplitude modulation, sub-audio & audio, amplitude modulation computer programs. · Begin Fourier synthesis	 Learn Additive Synthesis Use additive synthesis and AM instrs for Assignment #5
14. 11/10 (Week 7-2) · Discuss Fourier synthesis computer program pertaining to synthesis discussion · Listening- AM and additive synthesis	Work on projects =Add synth/AM projectAssignment #5 AM /Addsyn
15. 11/15 (Week 8-1) Assignment #5 due = AM/Addsynth · Subtractive synthesis, filters, noise and complex waveforms	BEGIN WORKING ON FINAL PROJECTS · Read ROADS (pp. 184-197) & MOORE (pp. 263-278)
16. 11/17 (Week 8-2) • Noise, Harmonic Spectra, Filters = Subtractive Synthesis	ROADS (pp.432-440) Assignment #6 Final Project proposal
17. 11/22 (Week 9-1) · Physical Modeling - Plucked String Algorithm · Processing Effects - Fixed and Variable · Assignment #6 due Final Project proposal presentation	ROADS (pp.451-486) MOORE (pp.340-353, 359-360, 369-376, 377-380)
18. 11/24 (Week 9-2) Separate meetings = discuss projects (Graded Progress reports)	Continue working and listening
19. 11/29 (Week 10-1) Separate meetings = discuss projects (Graded Progress reports)	Continue working and listening
20. 12/01 (Week 10-2) Individual Reports = FINAL PROJECT & DESCRIPTIONS DUE (AlloPortal Concert)	

V. Description of Final Project

Using instruments given in class, compose a piece of your choice. (length of piece will depend on density of notes, tempo, activity, etc...)

VI. Grading

Assignment 1 = 10%, Assignment 2= 10%, Assignment 3 = 10%, Assignment 4 = 15%,

Assignment 5 = 15%, Final Presentation 10%, Final Assignment = 20%, Classroom/Lab Participation = 10%

VII. Arts Library

Texts Materials will be distributed in class or assigned from the following books:

Required Reading (Books)

ROADS, CURTIS - A COMPUTER MUSIC TUTORIAL MOORE, F. R - ELEMENTS OF COMPUTER MUSIC

Other Books

Bateman, Wayne - Introduction to Computer Music

Dodge, Charles - Computer Music Synthesis, Composition

And Performance

Howe, Hubert - Electronic Music Synthesis

Matthews, Max - The Technology of Computer Music

Strange, Allen - Electronic Music Systems,

Techniques & Controls

Trythall, Gilbert - Principles and Practices of Electronic Music Roads, Curtis - Composing Electronic Music: A New Aesthetic

Other Articles

Chowning, John- The Synthesis of Complex Audio

Spectra by means of Frequency Modulation

Chowning, John - The Simulation of Moving Sound Sources
Moore, F.R. - An Introduction to the Mathematics of

Digital Signal Processing, Part I

Moore, F.R. - An Introduction to the Mathematics

of Digital Signal Processing, Part II

Moore, F.R. - Music Signal Processing in a Unix Environment

Moorer J.A How do Computers Make Music?

Moorer, J.A. - Signal Processing Aspects of Computer Music

Moorer, J.A. - About this Reverberation Business

Moorer & Grey - Lexicon Analyzed Tones (Part I Violin Tone)

Moorer - Lexicon Analyzed Tones (Part II Clarinet & Oboe Tones)

Truax, B - Organizational Techniques for C:M Ratios Schottsteadt,B - The Simulation of Natural Tones Using

Frequency Modulation with a Complex

Modulating Wave

Truax, B - Timbral Construction in Arrays as a Stochastic Process

VIII. List of Important works from Past History

Albright,W LAST RITES

Arel, Bulent MIMIANA II: FREIZE

Appleton,Jon CHEF D'OEUVRE Appleton,Jon Of A TONGA

Babbit, Milton ENSEMBLES FOR SYNTHESIZER

Babbit,M COMPOSITION FOR SYNTH

Berio, Luciano OMMAGIO A JOYCE

Berio Luciano VISAGE

Boretz,Ben GROUP VARIATIONS

Chowning, J. PHONEE Chowning, J. STRIA Chowning, J. TURENAS

Davidovsky,M. ELECTRONIC STUDY I Davidovsky,M SYNCHRONISM 6

Dodge, Charles THE EARTH'S MAGNETIC FIELD

Druckman, Jacob SYNAPSE Druckman, J ANIMUS II

Leedy, Douglas ENTROPICAL PARADISE

Ligeti, Georgy ARTICULATION

Lucier, Alvin NORTH AMERICAN TIME CAPSULE

McLean, Prisc. DANCE OF DAWN

McLean, Bart SPIRALS

Martirano, S. UNDERWORLD

Oliveros,P I OF IV

Randall, J.K LYRIC VARIATIONS

Reich,Steve COME OUT
Risset,Jean C MUTATIONS
Rudin,Andrew TRAGEODIA

Stockhausen,Kh GESANG DER JUNGLINGE

Stockhausen,K HYMNEN
Stockhausen,Kh KONTAKTE
Stockhausen,Kh KURZWELLEN
Stockhausen,Kh Mikrophonie I/II
Stockhausen,Kh TELEMUSIK
Subotnick,M SIDEWINDER
Subotnick,M SILVER APPLES

Subotnick,M TOUCH

Varese, Edgar POEME ELECTRONIQUE

Vercoe, Barry SYNTHESIZM

Wuorinen, Ch TIME'S ENCOMIUM

Wilson, George EXIGENCIES

Xenakis, I ORIENT-OCCIDENT